



















































































## Determination of preferred orientation

Crystalline grains in a material may be preferentially distributed along one orientation (preferred orientation).

This may complicate the analysis using conventional XRD methods derived from powder techniques.

## Methods:

- Compare relative peak height or area obtained from a 2θ/θ scan with the expected relative intensity from a standard (same material) with no preferred orientation (~ powder): Lotgering factors.
- Use the relative intensity method above combined with March-Dollase preferred orientation corrections to obtain % grains that are more oriented in a specific direction.
- 3. Use the rocking curve analysis of a strong film diffraction. The width of the rocking curve peak is used as texture parameter.
- 4. Perform pole figures to determine the presence of grains of a certain orientation in all sample directions.
- Use multiple pole figures from multiple orientations to obtain Orientation
   Distribution Functions: % of grain orientation distributions in all wafer directions.

















































































| EDXRF and WDXRF      |                                                             |                                                                                                      |
|----------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|                      | EDXRF                                                       | WDXRF                                                                                                |
| Dispersive system    | Energy                                                      | Wavelength                                                                                           |
| Raw data             | Intensity vs. Energy (keV)                                  | Intensity vs. Detector angle (2θ).                                                                   |
| Basic set up         | • X-ray tube • (Secondary Target) • Sample • Detector       | X-ray tube     Sample     Collimator ( for // beam)     Analyzer Crystal     Detector (+ goniometer) |
| Elemental Range      | Na – U                                                      | Be-U                                                                                                 |
| Detection limit      | Good for heavier elements (less optimum for light elements) | Good for all range                                                                                   |
| Sensitivity          | Good for heavier elements (less optimum for light elements) | Moderate for light elements. Good for heavy elements.                                                |
| Resolution           | Good for heavy elements (less optimum for light elements)   | Good for light elements (less optimum for heavy elements)                                            |
| Cost                 | Moderate                                                    | Relatively expensive                                                                                 |
| Measurement          | Simultaneous                                                | Sequential (moving detector on goniometer)     Simultaneous (fixed detector)                         |
| Moving parts         | No                                                          | Crystal, goniometer                                                                                  |
| Detector             | Solid state detector                                        | • Gas-filled (for $Be - Cu$ ) • Scintillation (for $Cu - U$ ).                                       |
| Qualitative analysis | Peak area                                                   | Peak height                                                                                          |







| <del></del> -                                                         | Comparison with oth                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                       | X-ray analysis methods                                                                                                                                                                                                                                                                                            | Other techniques                                                                                                                                                                                                                           |
| Sample<br>preparation<br>and vacuum<br>compatibility                  | No vacuum compatibility required (except XRF on vacuum).     "Any" sample size (depends on the goniometer size/weight capability).     Rough surfaces acceptable (parallel beam configuration).     No sample preparation required (prep recommended for the detection of unknown phases or elements in XRD/XRF). | Surface analysis and electron microscopy techniques will require vacuum compatibility and in many cases sample preparation.     Optical techniques will do analysis on air.                                                                |
| Composition<br>and impurity<br>determination<br>and<br>quantification | > ~ 0.1 w % (XRF > ppm); may require standards. > XRD: also phase information and % of crystallinity. > Data averaged over large lateral area.                                                                                                                                                                    | > XPS: > 0.01 – 0.1 at % (may require depth profiling). > SIMS: > 1 ppm (requires sputtering depth profiling). > EDS: > 0.1 – 1 w % over small volume 1μm³. > Little with phase information; averages over small lateral areas (< 100 μm). |
| Lattice<br>constants                                                  | ⊙ Better than within 10 <sup>-5</sup>                                                                                                                                                                                                                                                                             | ○ TEM: estimates ~ 10 <sup>-3</sup>                                                                                                                                                                                                        |
| Thickness in thin films                                               | > HR-XRD or XRR: direct measurement (no modeling for single or bi-layers). > Requires flat interfaces.                                                                                                                                                                                                            | RBS: > 10 nm (requires modeling).     Ellipsometry: requires modeling.     TEM: requires visual contrast between layers.                                                                                                                   |
| Grain size                                                            | Measures Crystallite Size.     Typically ~ 1-2 nm – microns, requires size/strain assumptions/ modeling.     "Volume average" size.                                                                                                                                                                               | ○ SEM: grain size distribution averaged over small area. ○ TEM/SEM: "number average" size.                                                                                                                                                 |

| Comparison with other techniques     |                                                                                                                                                                                                                                 |                                                                                                                                                           |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      | X-ray analysis methods                                                                                                                                                                                                          | Other techniques                                                                                                                                          |
| Texture                              | o Type and distribution averaged over large sample volume.                                                                                                                                                                      | o EBSD: within grain sizes dimensions, better sensitivity at the surface.                                                                                 |
| Residual Stress                      | > 10 MPa, averaged over large sample volume (large number of grains).     > Needs crystallinity.     > Measures strain and obtains stress from Hooke's law.     > Averages macro and micro stresses over large area of a layer. | > Wafer curvature: No need for crystallinity.<br>Direct measurement of stress, but only<br>interlayer stress between film and substrate<br>(macrostress). |
| Depth<br>dependent<br>information    | > Phase, grain sizes, texture and stress<br>"depth profiling" – requires x-ray information<br>depth modeling                                                                                                                    | > Surface analysis depth profiling: compositional depth profiles.                                                                                         |
| Surface or<br>Interface<br>roughness | > XRR: interface roughness 0.01 – 5 nm, including buried interfaces                                                                                                                                                             | > SPM: top surface only; rsm~ 0.01-100 nm.                                                                                                                |
| Defects                              | Nisfit dislocations (HR-XRD). Point defects (diffuse scattering with model). Extended defects (powder XRD with model). Average over larger sample area (> mm).                                                                  | > TEM: accurate identification of defects and<br>their densities; average over small sample<br>area. Sample preparation may introduce<br>artifacts.       |
| Instrument cost                      | ➤ Portable instruments ~ \$ 60 K.  ➤ Average well-equipped: ~ \$ 200 – 300 K.  ➤ Top of the line ~ \$ 500 K (including microdiffraction and 2D detectors).                                                                      | > Surface analysis instruments > \$ 500 K.<br>> Electron microscopes ~ \$ 300 K – 1 M.<br>> RBS ~ \$ 2 M.<br>> Raman, ellipsometry > \$ 100 K.            |









# Quick guide to our x-ray analysis instruments (2)



X-ray analysis instrumentation available as user facility in the FS-MRL

| Instrument                                  | Set up                                                                                                                                                                                                                                                         | Applications                                                                                                                                                                                                                      |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rigaku<br>D/Max b                           | Source: Cu Kα1+Kα2, line focus. Bragg-Brentano focusing configuration. Theta/2theta goniometer. Divergence, soller, scatter and receiving slits. Curved graphite monochromator. Scintillation detector.                                                        | Phase, size, strain, crystallinity. Bragg-Brentano applications. Rietveld analysis. Mostly for powder, bulks and thin film with small preferred orientation.                                                                      |
| Rigaku<br>Laue                              | Source: Mo point focus.     Four circle sample stage (manual).     Polaroid film camera detection system.                                                                                                                                                      | Single crystal orientation. Miscut information. Crystallographic alignment prior to crystal cutting.                                                                                                                              |
| Bruker /<br>Siemens<br>D5000<br>(Fall 2008) | Source: Cu Kα1+Kα2, line focus.     Bragg-Brentano focusing configuration.     Theta / theta goniometer.     Horizontal sample load.     No sample movement required during analysis.     Divergence, scatter and receiving slits.     Scintillation detector. | Ideal for powder and soft samples (horizontal load).     Phase, size, strain, crystallinity.     Bragg-Brentano applications.     Rietveld analysis.     Mostly for powder, bulks and thin film with small preferred orientation. |
| Kevex<br>Analyst 700<br>XRF                 | Source: Rh (side window) 3.3mA, 60kV     6 secondary targets, 2 detector collimators, 3 filters.     Si (Li) solid state detector.     Energy resolution 165 meV.                                                                                              | *.Elemental identification: Na – U.     *.Liquids, solids, powder samples.     *.Composition: > ppm (some standards available).                                                                                                   |



# **Recommended literature**



- Basic applications of x-ray diffraction:
  "X-ray diffraction a practical approach", C. Suryanarayana and M.G. Norton.
  "Introduction to X-Ray Powder Diffractometry", R. Jenkins and R. Snyder, Wiley-Interscience; 1996.
- "X-ray characterization of materials", E. Lifshin, Wiley-VCH, 1999.

Sample Freparation Methods:
"A practical guide for the preparation of specimens for x-ray fluorescence and x-ray diffraction analysis", V.E. Buhrke, R. Jenkins and D.K. Smith; Wiley-VCH, 1998.

Rietveld Analysis:
"The Rietveld Method" ed. By R.A. Young, Oxford Press, 2000.

Thin Analysis by X-ray: "Thin Films Analysis by X-ray Scattering", M.Birkholz, Wiley-VCH, 2006

## High-resolution X-ray analysis:

- "X-ray scattering from semiconductors", P. Fewster, Imperial College, 2001.
  "High Resolution X-Ray Diffractometry And Topography", D.K. Bowen and B.
  K. Tanner, CRC, 1998.
- "High-Resolution X-Ray Scattering: From Thin Films to Lateral Nanostructures (Advanced Texts in Physics)", U. Pietsch, V. Holy and T. Baumbach, Springer, 2004.

Industrial applications of x-ray analysis:
"Industrial Applications of X-Ray Diffraction" by F. Smith (Editor), CRC, 1999.
"X-Ray Metrology in Semiconductor Manufacturing", D.K. Bowen and B.K.

## Glancing/grazing incidence methods and reflectometry:

"Thin film and surface characterization by specular X-ray reflectivity", E. Chason and T. M. Mayer, Critical Reviews in Solid State and Materials Sciences, 22 (1997) 1 – 67.

"Review on grazing incidence X-ray spectrometry and reflectometry", K.N. Stoev and K. Sakurai, Spectrochimica Acta B: At Spectros, 54 (1999) 41-82.

Residual stress and stress gradients:
"Residual Stress: Measurement by Diffraction and Interpretation", I. C. Noyan and J. B. Cohen, Springer-Verlag, 1987.
"Residual stress/strain analysis in thin films by X-ray diffraction", I.C.

Noyan, T.C. Huang and B.R. York, Critical Reviews in Solid State and Materials Sciences, **20** (1995) 125 – 177.

## X-ray analysis of clay minerals:

"X-Ray Diffraction and the Identification and Analysis of Clay Minerals", D.M. Moore and R.C. Reynolds, Oxford University Press, 1997.

X-ray fluorescence:
"Quantitative x-ray spectrometry", R. Jenkins, R.W. Gould and D. Gedeke, Marcel Dekker Inc, 1995

"Quantitative x-ray fluorescence analysis theory and application", G.R. Lachance and F. Claisse, Willey, 1995.

"Laue Method", J.L. Amoros, Academic Press Inc., 1975.

## Two-dimensional XRD (with areal detectors):

Microdiffraction using two-dimensional detectors", B.B. He, Powder Diffraction 19 (2004) 110 -118.

- Fundaments of x-ray scattering: "X-ray diffraction", B.E. Warren, Addison-Wesley, 1962.
- "X-ray diffraction procedures for polycrystallines and amorphous materials", H.P. Klug and L.E. Alexander, Wisley-Interscience, 1974. 
  "Elements of x-ray diffraction", B.D. Cullity, Addison-Wesley, 1978.
- "Elements of Modern X-ray Physics", J. Als-Nielsen (Author), D. McMorrow,
- Wiley, 2001. "Coherent X-Ray Optics (Oxford Series on Synchrotron Radiation)", D. Paganin, Oxford University Press, 2006

Web resource: www.ccp14.ac.co.uk (free x-ray data analysis programs and tutorials)

